Особенности акклиматизации в высоких горах

26/03/2012

Комментариев: 1

Автор: Рачинский Ярослав

ВЫСОТА И ЧЕЛОВЕК

При подъеме на высоту одновременно уменьшаются атмосферное давление, парциальное давление кислорода в атмосфере и легочных альвеолах, а также насыщение гемоглобина кислородом (98% О2 в крови транспортируется эритроцитами и только 2% – плазмой). Это может вызвать гипоксию (кислородное голодание) – состояние, возникающее при недостаточном снабжении тканей кислородом или нарушении его использования в процессе биологического окисления. Близким по смыслу является термин гипоксемия – пониженное содержание кислорода в крови. Кислород необходим для процессов окислительного фосфорилирования (синтеза аденозинтрифосфата (АТФ*); дефицит О2 нарушает протекание всех процессов в организме, зависящих от энергии АТФ: работу мембранных насосов клеток, транспортирующих ионы против градиента концентраций, синтез медиаторов и высокомолекулярных соединений — ферментов, рецепторов для гормонов и медиаторов. Если это происходит в клетках центральной нервной системы, нормальное протекание процессов возбуждения и передачи нервного импульса становится невозможным [2].

*Причиной предпочтения в условиях гипоксии, упражнений высокой интенсивности получения энергии за счет углеводов, а не более калорийных жиров является больший выход АТФ: углеводы образуют 6,3 молей АТФ/мольО2; жиры – 5,6 молей АТФ/мольО2

Высота над уровнем моря, мАтмосферное давление,
мм. рт. ст.
Парциальное давление О2в наружном воздухе
(Рнар.О2)мм. рт. ст.
Парциальное давление О2в альвеолярном воздухе легких (Ральв.О2),
мм. рт. ст.
Ральв.О2
___________
Рнар.О2
Насыщение гемоглобина кислородом, %
07601591020,641596
1500630132850,643994
3000530111690,621690
450043090520,577782
650033069360,521765
700030063300,476260
900022547260,553250

Из приведенной таблицы можно сделать ряд выводов:
– снижение парциального давления воздуха и, соответственно, кислорода от высоты происходит нелинейно;
– степень насыщения легких кислородом по отношению к его содержания во внешнем воздухе снижается (это может быть связано с возрастанием в легких доли СО2, а в “зоне смерти” дыхание проходит уже столь интенсивно, что СО2 в легких не успевает накапливаться);
– гемоглобин способен почти на 100% насыщаться О2 при его парциальном давлении в легких 13-14%(!) от атмосферного;
– степень насыщения гемоглобина кислородом не стоит в линейной зависимости: даже тогда, когда парциальное давление кислорода в легких уменьшится вдвое, гемоглобин окажется еще насыщенным на 80%.

Благодаря удивительному свойству гемоглобина жадно присоединять к себе кислород даже при малых его давлениях оказывается возможным передвижение человека и жизнь его в высокогорье.
Легкие реагируют на недостаток кислорода сначала более глубоким дыханием (увеличением его объема):

Высота, м050006000
V вдыхаемого воздуха, мл7158001000

Степень насыщения гемоглобина человека кислородом от высоты
и снижение атмосферного давления (соответственно – количества кислорода) с высотой

а затем уже и нарастанием частоты дыхания. При сниженной плотности воздуха естественно уменьшается и масса содержащегося в нем кислорода, т.е. происходит “снижение кислородного потолка”.

Поэтому снабже­ние кислородом организма на больших высотах будет недостаточным, а теоретическая мощность выполняемой работы будет определяться степенью насыщения гемоглобина крови кислородом.
И определять, в конечном итоге, длительность акклиматизации.

По современным представлениям высоты до:
5300-5400 м – зона полной акклиматизации, когда отдых и питание полностью восстанавливают затраченную энергию здоровых людей;
5400-6000 м – зона неполной акклиматизации (нет полного восстановления даже при отдыхе);
6000-7000 м – зона адаптации (компенсаторные механизмы организма работают с большим напряжением и полное восстановление жизненных сил хоть и с трудом, но кратковременно возможно;
7000-7800 м – зона частичной, временной адаптации (организм начинает расходовать собственные резервы без возможности их пополнения. Альпинист может находиться в этой зоне до 4-5 дней;
свыше 7800 м – “зона высотной смерти” (пребывание в ней в течение 2-3 дней без кислородного аппарата вызывает быструю детериорацию (истощение).

Об этом многие знают. И все же хочется обратить внимание, что указанные состояния в этих высотных зонах подразумевают уже наличие у восходителей адекватной акклиматизации к этим высотам. Кстати: приведенный выше график объясняет почему относительно полноценный отдых возможен на высотах 4200-4400 м.

АККЛИМАТИЗАЦИЯ ИЗНУТРИ

Ученые выделяют в процессах адаптации:
а) “срочная” (острая, аварийная) фаза и б) “долговременная” фазы.

Краткосрочная адаптация — это быстрый ответ организма на гипоксию как на стрессирующий фактор с целью компенсации возни­кающих в организме отклонений от равновесного со­стояния. Механизмы такого ответа в организме предсуществуют и включаются “с места” при снижении содержания кислорода в артериальной крови от 80 до 50 мм рт. ст. и ниже. Некоторые авторы этот период называют “дыхательной акклиматизацией”. Первая реакция организма – борьба за кислород, за поддержание его нормальной концентрации в крови. Действие гипоксии на интерорецепторы приводит к мобилизации транспортных систем. Увеличиваются частота дыхания, час­тота сердечных сокращений, минутный объем крови, количество основного переносчика кислорода — гемоглобина за счет выброса эритроцитов из депо (в первую очередь из селезенки). На первом этапе всегда наблю­дается перераспределение крови в организме, увеличение мозгового кровотока (мозговая ткань потребляет кислорода на единицу массы в 30 раз больше, чем мышечная), коронарного кровотока (может возрасти при острой гипоксии в 2-3 раза) за счет сниже­ния кровотока в других органах. Известно, что увеличение мозгового кровотока и является причиной головных болей. На этом этапе акклиматизации слабое снабжение циркулирующей кровью других органов нарушает терморегуляцию организма, повышает чувствительность к холодовым воздействиям и к инфекционным заболеваниям. Активация транспортных систем осуществляется симпатическим отделом вегетативной нервной системы. Одновременно включаются механизмы анаэробного гликолиза: норадреналин, выступающий как медиатор симпатического отдела нервной системы вместе с адреналином, как гормоном мозгового слоя надпочечников, через систему внутри­клеточных посредников активирует ключевой фермент расщепления гликогена — фосфорилазу. Краткосрочные механизмы адаптации могут быть эффективны только на относительно небольших высотах и в течение непродолжительного времени. Увели­ченная нагрузка на сердце и дыхательную мускулатуру требует дополнительного расхода энергии, то есть повышает кислородный запрос. Вследствие интенсивно­го дыхания (гипервентиляции легких) из организма интенсивно удаляется CO2. Падение его концентрации в артериальной крови ведет к ослаблению дыхания, так как именно CO2 является основным стимулятором ды­хательного рефлекса; в тканях накапливаются кислые продукты анаэробного гликолиза. Выход энергии АТФ при этом мал. Многие авторы считают, что фаза “острой акклиматизации” заканчивается к 8-12-у дню. Поэтому в дальнейшем в организме включаются механизмы долговременной адаптации, стратегия которой сводится к смещению основного поля деятельности с механизмов транспорта на механизмы утилизации кислорода, на повышение экономичности использования ресурсов, имеющихся в распоряжении организма. Долговременная адаптация – это уже структурные перестройки в организме, связанные со стимуляцией биосинтетических процессов в системах транспорта, регуляции и энергообеспечения, что увеличивает их структурный потенциал и резерв­ную мощность. Условно характер структурных изменений можно представить следующим образом:

Системы организмаХарактер структурных перестроек в организме
Транспортные– разрастание сосудистой сети (ангиогенез) в легких, сердце, голо­вном мозге;
– рост легочной ткани;
– увеличение количе­ства эритроцитов в крови (эритропоэз)
Регуляторные– увеличение активности фермен­тов, ответственных за синтез медиаторов и гормонов;
– увеличение числа рецепторов к ним в тканях
Энергообеспечения– увеличение числа митохондрий и ферментов окисления и фосфорилирования;
– синтез гликолитических ферментов

Разрастание сосудистой сети сердца и головного мозга создает дополнительные резервы для снабжения этих органов кислородом и энергетическими ресурсами. Увеличение емкости сосудистого русла снижает его общее сопротивление. Рост сосудистой сети в легких в сочетании с увеличением диффузионной поверхности легочной ткани обеспечивает возможность повышения газообмена. Ключевую роль в индукции эритропоэза, ангиогенеза и гликолиза играет железосодержащий белок HIF-1 (Hypoxia inducible factor), активирующийся при гипоксии [3].

Кривые поглощения и отдачи кислорода
гемоглобином животных высокогорья

Система крови претерпевает комплекс изменений. Общеизвестно, что на этапе долговременной акклиматизации растет число эритроцитов и содержание в них гемоглобина, повышающих кислородную емкость крови (сухое вещество эритроцита содержит до 95% гемоглобина). Повышение концентрации эритроцитов начинается со 2-3 дня и может возрастать на 40-50% к 4-й неделе пребывания в горах (доходит до 8 млн/мм3, в то время как у жителей равнины их 4,5-5 млн/мм3). Это обусловлено увеличением секреции гормонов — эритропоэтинов в красном костном мозге. Менее известно, что на этапе долговременной адаптации, помимо типичного взрослого гемоглобина (HbА) появляется эмбриональный гемоглобин (HbF), способный присоединять О2 при более низком парциальном давлении кислорода в альвеолярном воздухе (рис.2): молодые эритроциты обладают более высоким уровнем энергообмена [4]. Да и сами молодые эритроциты имеют несколько измененную структуру, диаметр их меньше, облегчая прохождение по капиллярам. Об изменении качества самих эритроцитах говорит и повышение содержание 2,3-дифосфоглицерата (2,3-ДФГ), способствующего освобождению кисло­рода из комплекса с гемоглобином в тканях (установлено, что концентрация 2,3-ДФГ в эритроцитах у спортсменов, тренирующих выносливость, на 15-20% выше, чем у не спортсменов).
Высокогорная адаптация вызывает также рост лейкоцитов, максимум которых (+40%) достигается примерно к 40-му дню пребывания в горах.

Увеличение кислородной емкости крови дополняется повышением концентрации в миокарде и скелетных мышцах мы­шечного белка – миоглобина (Мb), способного переносить кислород в зоне более низкого парциального давления, чем гемоглобин. Увеличение мощности гликолиза в во всех тканях в процессе длительной адаптации к гипоксии оправдано энергетически, требует меньше кислорода. Поэтому начинает расти активность ферментов, расщепляющих глюкозу и гликоген, появляются новые изоформы ферментов, более соответствующие анаэробным условиям, увеличиваются запасы гликогена. Опасность сдвига pH при усилении анаэробного гликолиза предотвращается увеличением щелочного резерва крови. На этом этапе акклиматизации возрастает экономичность функцио­нирования тканей и органов, что достигается повышением числа митохондрий на единицу массы миокарда, возрастанием активности митохондриальных ферментов и скорости фосфорилирования и, как следствие, — большим выходом АТФ на единицу субстрата при одном и том же уровне потребления кислорода. В итоге увеличивается способность сердца к извлечению и использованию кислорода из протекающей крови при его низких концентрациях. Это позволяет ослабить нагрузку на транспортные системы: снижаются частота дыхания и сердцебиения, уменьшается минутный объем сердца. На высоте 3800 м ткани горца извлекают 10,2 мл О2 из каждых 100 мл крови против 6,5 мл у приехавшего в горы молодого здорового жителя равнин; на 4350 м коронарный кровоток и потребление О2 горцев на 30% экономичнее. У горцев увеличена и масса циркулирующей крови, что обусловливает возрастание ее дыхательной поверхности.

При длительном воздействии высотной гипоксии активируется синтез РНК и белка в различных отделах нервной системы и, в частности, в дыхательном центре, что обеспечивает возможность усиления дыхания при низких концентрациях СО2 в крови*; улучшается коорди­нация дыхания и кровообращения. Возрастает мощность гормональных звеньев и их экономичность – уровень основного обмена в процессе адаптации может снижаться. Установлено, что вторая фаза акклиматизации в целом завершается через три недели после начала прибытия в горы. Однако для больших высот и эта длительность акклиматизации может быть недостаточна [5].

* вероятно, указанная причина послужила поводом к приступу горной болезни при первом знакомстве с 7000 м автора статьи, имеющего при этом одну из самых низких ЧСС в группе – всего 70 уд/мин ночью на 7200.

Составлено по материалам статьи: «Проблемы акклиматизации в горах  – Олег Янчевский, г. Киев http://www.tkg.org.ua/node/11577. Редакция и дополнения – Иванченко Олег.

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest
1 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
vitiaz
vitiaz
13 лет назад

Картинка потрясающая, а вообще по моему пик Ленина переименовали, ка-то так: пик имени Абуали Сино